- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brehm, C. (2)
-
Bailey, S. (1)
-
Camillo, G_P (1)
-
Cerminara, A. (1)
-
Davis, J. (1)
-
Ganju, S (1)
-
Kloker, M_J (1)
-
Nayak, R. (1)
-
Potts, J. (1)
-
Saikia, B. (1)
-
Tanno, H. (1)
-
Wagner, A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work presents recent advancements in the study of film cooling in hypersonic flows, considering experimental and numerical investigations, with the aim to characterize the wall-cooling performance in different coolant injection and baseflow conditions in a Mach number range 2–7.7. The study explores the mutual interaction between the injected coolant film and the boundary-layer flow, with emphasis on the effects of wall blowing on the boundary-layer characteristics, stability, and transition to turbulence, as well as the effect of transition on wall-cooling performance. Considered flow configurations include cases of effusion cooling in both wall-normal or slightly inclined and wall-parallel blowing, different types of coolant, cases of favorable pressure gradient compared to zero pressure gradient, as well as transpiration cooling cases at different blowing ratios and surface geometries. For the transpiration cooling case, experiments in different hypersonic wind tunnel facilities are presented for flat plate and cone geometries, with coolant injected through C/C porous samples, whereas numerical simulations of modeled porous injection are presented for a flat plate and a blunt cone, showing results for the boundary-layer receptivity with coolant injection and the associated effects on transition and cooling performance. A summary of the main findings is provided along with a critical analysis based on a comparative study to evaluate the effect of each configuration, injection strategy, and key parameters on the boundary-layer flow and the feedback on wall-cooling performance. Conclusions are drawn about potential directions of study for the further development and optimization of the film cooling technique for future hypersonic vehicles.more » « less
-
Brehm, C.; Davis, J.; Ganju, S; Bailey, S. (, 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11))In past experiments, simulations and theoretical analysis, rotation has been shown to dramatically effect the characteristics of turbulent flows, such as causing the mean velocity profile to appear laminar, leading to an overall drag reduction, as well as affecting the Reynolds stress tensor. The axially rotating pipe is an exemplary prototypical model problem that exhibits these complex turbulent flow physics. For this flow, the rotation of the pipe causes a region of turbulence suppression which is particularly sensitive to the rotation rate and Reynolds number. The physical mechanisms causing turbulence suppression are currently not well-understood, and a deeper understanding of these mechanisms is of great value for many practical examples involving swirling or rotating flows, such as swirl generators, wing-tip vortices, axial compressors, hurricanes, etc. In this work, Direct Numerical Simulations (DNS) of rotating turbulent pipe flows are conducted at moderate Reynolds numbers (Re=5300, 11,700, and 19,000) and rotation numbers of N=0 to 3. The main objectives of this work are to firstly quantify turbulence suppression for rotating turbulent pipe flows at different Reynolds numbers as well as study the effects of rotation on turbulence by analyzing the characteristics of the Reynolds stress tensor and the production and dissipation terms of the turbulence budgets.more » « less
An official website of the United States government

Full Text Available